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Over the last several decades, research on snake venom toxins
has provided not only new tools to decipher molecular details of
various physiological processes, but also inspiration to design and
develop a number of therapeutic agents. Blood circulation, parti-
cularly thrombosis and haemostasis, is one of the major targets of
several snake venom proteins. Among them, anticoagulant pro-
teins have contributed to our understanding of molecular mech-
anisms of blood coagulation and have provided potential new
leads for the development of drugs to treat or to prevent unwanted
clot formation. Some of these anticoagulants exhibit various
enzymatic activities whereas others do not. They interfere in
normal blood coagulation by different mechanisms. Although
significant progress has been made in understanding the structure–

function relationships and the mechanisms of some of these
anticoagulants, there are still a number of questions to be answered
as more new anticoagulants are being discovered. Such studies
contribute to our fight against unwanted clot formation, which
leads to death and debilitation in cardiac arrest and stroke in pa-
tients with cardiovascular and cerebrovascular diseases, arterio-
sclerosis and hypertension. This review describes the details of the
structure, mechanism and structure–function relationships of
anticoagulant proteins from snake venoms.

Key words: anticoagulant, C-type lectin, metalloproteinase, phos-
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INTRODUCTION

Snake venoms are complex mixtures of pharmacologically active
proteins and polypeptides. They play an important role in incap-
acitating and immobilizing, as well as in digesting, prey [1,2].
Thus toxins have evolved to specifically target various critical
points in the physiological systems of prey animals. Neuromus-
cular and circulatory systems are the two main physiological
systems that are targeted by a great many toxins, as interruption(s)
in these systems make the prey succumb to the venom in a
short time. Over the years, a number of toxins that affect blood
circulation have been isolated and characterized from various
snake venoms [3–6]. Some of them affect platelet aggregation
(for recent reviews, see [7–9]), whereas others affect blood
coagulation. Studies of these factors have contributed immensely
to the deciphering of various molecular mechanisms involved in
the physiological processes. In addition, these studies have helped
us in the development of various new therapeutic agents for the
treatment of cardiovascular and haematological disorders [10,11].
Venom proteins affecting blood coagulation can functionally
be classified as pro-coagulant or anticoagulant proteins on the
basis of their ability to shorten or prolong the blood-clotting
process. Pro-coagulant proteins are either serine proteinases
or metalloproteinases. Their sizes vary between 24 kDa and
300 kDa. They induce blood coagulation either by specifically
activating zymogen, one of the blood coagulation factors, or by
directly converting soluble fibrinogen into an insoluble fibrin clot.
Structural and functional details of these pro-coagulant proteins
from snake venoms have been recently reviewed [12–15].

Snake venom toxins that prolong blood coagulation are pro-
teins or glycoproteins with molecular masses ranging from

6 kDa to 350 kDa. These factors inhibit blood coagulation by
different mechanisms. Some of these anticoagulant proteins
exhibit enzymatic activities, such as PLA2 (phospholipase A2)
and proteinase, whereas others do not exhibit any enzymatic
activity. The mechanism of anticoagulant activity of only a few
of these proteins is well understood. Further research is required
to delineate the structure–function relationships and mechanism
of a number of new anticoagulant proteins. Studies on such anti-
coagulants contribute to our understanding of ‘vulnerable’ sites
in the coagulation cascade. Thus these studies help us to design
novel strategies to develop anticoagulant therapeutic agents.
Earlier reviews, dealing with snake venom proteins affecting
thrombosis and haemostasis, have only marginally dealt with anti-
coagulant proteins [3–8,12]. This review attempts to provide an
overview of the current understanding of the structure, function
and mechanism of anticoagulant proteins (Table 1).

ANTICOAGULANT PROTEINS WITH ENZYMATIC ACTIVITY

Several proteins with enzymatic activity, such as PLA2 and
proteinases, inhibit blood coagulation. Some of them inhibit clot
formation by the physical destruction of a factor that contributes
directly to the coagulation. In these cases, the mechanisms
appear to be simple and are directly dependent on the respective
enzymatic activity. The study of such factors, in general, may not
significantly contribute to our understanding of blood coagulation.
However, at times, a careful examination of their mechanisms
may be not only important, but also essential. For example, con-
ventional wisdom suggests that PLA2 enzymes exert their anti-
coagulant effects by the hydrolysis and physical destruction of

Abbreviations used: FVa etc., Factor Va, etc; Gla, γ-carboxyglutamic acid; PLA2, phospholipase A2; HsPLA2, human secretory PLA2; TF–FVIIa complex,
tissue factor–Factor VIIa complex; TLE, thrombin-like enzyme.
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Table 1 Anticoagulant proteins from snake venom

Protein Mechanism of action Remarks

Enzymatic anticoagulant proteins
1. Phospholipase A2 enzymes Strongly anticoagulant Inhibits activation of FX to FXa by extrinsic By both enzymatic and non-enzymatic

tenase complex mechanisms; target protein not known
Inhibits activation of prothrombin to By non-enzymatic mechanism;

thrombin by prothrombinase complex binds to FXa and interferes in the
prothrombinase complex formation

Weakly anticoagulant Inhibits activation of FX to FXa by extrinsic By non-enzymatic mechanism through
tenase complex hydrolysis of phospholipids

2. Metalloproteinases (α-fibrinogenase) Weaker soft clot formation due to physical By cleaving Aα-chain of fibrinogen
destruction of fibrinogen

3. Serine proteinases Protein C activators Inactivation of cofactors FVa and FVIIIa Directly activate protein C
degradation

Thrombin-like enzymes Deplete fibrinogen in the plasma Releases either fibrinopeptide A or B;
fibrin clots are removed leading
to depletion of fibrinogen content

Fibrinogenases Physical destruction of fibrinogen Mechanism not known
4. L-Amino acid oxidase Inhibits FIX activity Mechanism not known

Non-enzymatic anticoagulant proteins
1. C-type lectin related proteins FX and FIX binding proteins Inhibit the formation of coagulation complexes Bind to the Gla domain of FIX and FX, and

interfere in their binding to phospholipids
Bothrojaracin, bothroalternin Inhibit the activity of thrombin Bind to α-thrombin at both exosite-1

and exosite-2
2. Three-finger toxin Cardiotoxins from Naja nigricollis crawshawii Act on the extrinsic pathway of the clotting Mechanism not known

venom cascade
Hemextin A and hemextin AB complex Prevents clot initiation by inhibiting

from Hemachatus haemachatus venom extrinsic tenase activity Specifically binds to FVIIa

the membrane surface required for the formation of coagulation
complexes. Interestingly, the anticoagulant activity of certain
PLA2 enzymes is due to their interaction with blood coagul-
ation proteins and not phospholipid hydrolysis (for details, see
below). Thus non-enzymatic mechanisms of these enzymatic
proteins cannot be ignored.

PLA2 enzymes

PLA2 enzymes are esterolytic enzymes which hydrolyse glycero-
phospholipids at the sn − 2 position of the glycerol backbone
releasing lysophospholipids and fatty acids. Snake venoms are
rich sources of PLA2 enzymes. Several hundred snake venom
PLA2 enzymes have been purified and characterized. Amino acid
sequences of over 280 PLA2 enzymes have been determined
[16,17]. (A database is available at http://sdmc.lit.org.sg/Templar/
DB/snaketoxin PLA2/index.html.) They are approx. 13 kDa pro-
teins and contain 116–124 amino acid residues and six or seven
disulphide bonds. They are rarely glycosylated. So far, three-
dimensional structures of more than 30 PLA2 enzymes have been
determined (for a comprehensive list, see [18]). The structural data
indicate that snake venom PLA2 enzymes share strong structural
similarity to mammalian pancreatic as well as secretory PLA2

enzymes. They have a core of three α-helices, a distinctive
backbone loop that binds catalytically important calcium ions, and
a β-wing that consists of a single loop of antiparallel β-sheet. The
C-terminal segment forms a semicircular ‘banister’, particularly
in viperid and crotalid PLA2 enzymes, around the Ca2+-binding
loop. In addition, they have a similar catalytic function in
hydrolysing phospholipids at the sn − 2 position. However, in con-
trast with mammalian PLA2 enzymes, many snake venom PLA2

enzymes are toxic and induce a wide spectrum of pharmacological
effects [19–21]. These include neurotoxic, cardiotoxic, myotoxic,
haemolytic, convulsive, anticoagulant, antiplatelet, oedema-
inducing and tissue-damaging effects. Thus PLA2 enzymes also

form a family of snake venom toxins, which share a common
structural fold but exhibit multiple functions. These factors make
the structure–function relationships and the mechanisms of action
intriguing, and pose exciting challenges to scientists.

Some snake venom PLA2 enzymes inhibit blood coagulation
[22–25]. Boffa and colleagues [22,23] studied the anticoagulant
properties of a number of PLA2 enzymes and classified them
into strongly, weakly and non-anticoagulant enzymes. Strongly
anticoagulant PLA2 enzymes inhibit blood coagulation at con-
centrations below 2 µg/ml. Weakly anticoagulant PLA2 enzymes
show effects between 3 and 10 µg/ml. A number of venom PLA2

enzymes do not prolong the clotting times significantly even
at 15 µg/ml. Thus the anticoagulant activity of different PLA2

enzymes varies significantly. Evans et al. [25] purified three
anticoagulant proteins (CM-I, CM-II and CM-IV) from Naja
nigricollis (black-necked spitting cobra) venom and showed their
identity with PLA2 enzymes. CM-IV shows at least 100-fold more
potent anticoagulant activity than CM-I and CM-II [26]. On the
basis of their anticoagulant properties, they were classified as
strongly (CM-IV) and weakly (CM-I, CMII) anticoagulant PLA2

enzymes respectively. Since phospholipids play a crucial role
in the formation of several coagulation complexes, intuitively
one might anticipate that the destruction of phospholipid surface
would be the primary mechanism to account for anticoagulant
effects of PLA2 enzymes. However, strongly anticoagulant PLA2

enzymes also affect blood coagulation by mechanisms that are
independent of phospholipid hydrolysis (see below).

To explain the functional specificity and mechanism of in-
duction of various pharmacological effects, the target model was
proposed [21,27,28]. Accordingly, the susceptibility of a tissue
to a particular PLA2 enzyme is due to the presence of specific
‘target sites’ on the surface of target cells or tissues. These target
sites are recognized by specific ‘pharmacological sites’ on the
PLA2 molecule that are complementary to ‘target sites’ in terms
of charges, hydrophobicity and van der Waals contact surfaces
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[21,27,28]. Proteins (or glycoproteins) could act as specific target
sites for PLA2 enzymes. The affinity between PLA2 and its
target protein is in the low nanomolar range, whereas the binding
between PLA2 and phospholipids is in the high micromolar range.
Such a four to six orders of magnitude difference in affinity be-
tween the protein–protein interaction and the protein–phos-
pholipid interaction explains why the interaction of PLA2 and
its target protein governs the pharmacological specificity [27,28].

The target proteins such as membrane-bound receptors/accep-
tors are identified through studies using radiolabelled PLA2

enzymes and specific binding studies, as well as photoaffinity
labelling techniques (for details, see [29]). Anticoagulant PLA2

enzymes, on the other hand, target one or more soluble proteins
or their complexes in the coagulation cascade. Furthermore, the
enzymes may interact with the active, but not the zymogen, form
of the coagulation factor. Therefore different strategies have been
used to identify the soluble target protein in order to understand
the mechanism of anticoagulant effects of PLA2 enzymes.

Mechanism of anticoagulant effects

A simple ‘dissection approach’ was used to identify the specific
stage of the coagulation cascade that is inhibited by anticoagulant
PLA2 enzymes (for details, see [30,31]). In this approach, the
effects of an anticoagulant on three commonly used clotting
time assays, namely prothrombin time, Stypven (Russell viper
venom) time and thrombin time, were studied to identify the
stage in the extrinsic coagulation cascade. The anticoagulant will
prolong clotting times when the cascade is initiated ‘upstream’
of the inhibited step, whereas it will not affect the clotting times
when the cascade is initiated ‘downstream’ of the inhibited step.
Since the above clotting assays specifically initiate the coagulation
cascade at three different stages, it is easier to pinpoint the specific
step(s) that is (are) inhibited by the anticoagulant (for details, see
[18,30,31]). Using this strategy as well as the inhibition studies
of specific reconstituted complexes, it was shown that the ex-
trinsic tenase [TF–FVIIa (tissue factor–Factor VIIa)] complex is
inhibited by all three anticoagulant PLA2 enzymes from N. nigri-
collis venom (i.e. CM-I, CM-II and CM-IV), whereas the pro-
thrombinase complex is inhibited only by CM-IV. Thus the
strongly anticoagulant enzyme CM-IV inhibits both the extrinsic
tenase and prothrombinase complexes, creating two ‘bottlenecks’
in the coagulation cascade, whereas the weakly anticoagulant en-
zymes CM-I and CM-II only inhibit the extrinsic tenase complex,
and create only a single bottleneck [30].

The prothrombinase complex is inhibited by the strongly
anticoagulant PLA2 enzyme CM-IV via a non-enzymatic mech-
anism [32,33]. The inhibition of this complex does not increase
with an increase in incubation time with CM-IV. In contrast,
weakly anticoagulant CM-I and CM-II fail to inhibit the prothrom-
binase complex even after 30 min incubation [32,33]. Despite
the complete hydrolysis of phospholipids by CM-I and CM-II,
thrombin formation is not significantly reduced. Thus the inhi-
bition of the prothrombinase complex is independent of phospho-
lipid hydrolysis. Alkylation of the active-site residue His48 in
CM-IV results in the loss of enzymatic activity, but it retains
more than 60% of the inhibition of the prothrombinase complex.
Furthermore, CM-IV inhibits thrombin formation more strongly
in the absence of phospholipids than in their presence (for details,
see [33]). Studies of inhibition kinetics indicate that CM-IV is
a non-competitive inhibitor [33]. Thus CM-IV neither competes
with prothrombin to bind to the active site of the prothrombinase
complex nor binds to prothrombin. However, CM-IV competes
with FVa (Factor Va) and interferes with complex formation
[32,34]. The addition of increasing amounts of FVa to the mixture

reverses the inhibition, suggesting that CM-IV may compete with
FVa for binding to FXa (Factor Xa) [34]. Direct binding studies
using isothermal calorimetry showed that CM-IV forms a 1:1
complex with FXa (Kd 500 nM) and blocks the formation of the
prothrombinase complex [34]. Thus the strongly anticoagulant
PLA2 enzyme CM-IV inhibits the key step in blood coagulation by
a novel non-enzymatic mechanism, and FXa is the target protein
for the anticoagulant activity of this enzyme [32,34].

All three PLA2 enzymes from N. nigricollis venom inhibit
the extrinsic tenase (TF–FVIIa) complex [35]. Interestingly, the
strongly anticoagulant enzyme CM-IV inhibits the tenase by both
enzymatic and non-enzymatic mechanisms. On the other hand,
weakly anticoagulant CM-I and CM-II inhibit the complex mostly
by their enzymatic activity (for details, see [35]). Further studies
are needed to clarify the non-enzymatic mechanism of inhibition
by CM-IV.

Structure–function relationships

PLA2 enzymes share similar protein folds and three-dimen-
sional structures, but exhibit diverse biological properties. Thus
understanding their structure–function relationships and identify-
ing their functional sites is a subtle, complicated and challenging
task. Using a combination of theoretical and experimental ap-
proaches, we and others have successfully identified some of the
functional sites in PLA2 enzymes (for references and details, see
[21,27,28]).

The anticoagulant region was identified by a systematic and
direct comparison of the amino acid sequences of strongly, weakly
and non-anticoagulant enzymes [26]. To minimize phylo-
genetic and structural parameters, we initially restricted the se-
quence comparison to seven PLA2 enzymes isolated from venoms
of the genus Naja with different anticoagulant potencies, and then
extended this to others. The region between residues 54 and 77
is positively charged in strongly anticoagulant PLA2 enzymes,
but negatively charged in weakly and non-anticoagulant en-
zymes. At both ends of the region is a pair of lysine residues that
are replaced by neutral or negatively charged amino acid resi-
dues [26]. This region is located on the surface and is accessible
for interaction (Figure 1A). The modification of lysine residues
by carbamoylation [36], ethoxyformylation or guanidination [37]
affects the anticoagulant properties of the basic PLA2 of N. nigri-
collis venom. Neutralization of the positive charges of lysines
by carbamoylation resulted in almost complete loss of anti-
coagulant activity, whereas the enzymatic activity was not affected
significantly [36]. In contrast, guanidination of lysine residues,
which leads to a retention of the positive charges, reduced
the anticoagulant potency of the enzyme by only 50% [37].
This supports the essential nature of the positive charges in the
proposed anticoagulant site.

Strongly anticoagulant PLA2 enzymes exhibit high penetrating
ability, whereas non-anticoagulant ones show weak penetrat-
ing ability [23,24]. Furthermore, strongly anticoagulant PLA2

enzymes bind to phospholipid vesicles with a significant increase
in their intrinsic fluorescence, whereas poor anticoagulants show
little or no effect [26,38]. The changes in the fluorescence were
correlated to the microenvironment of Trp68 in the anticoagulant
region (for details, see [26]). On the basis of a comparison of three-
dimensional structures of class II PLA2 enzymes, three indep-
endent groups of researchers supported the predicted antico-
agulant site [39–41]. This region shows conformational similarity,
and the presence of a positively charged residue free for intermo-
lecular interactions at the corner of the molecule corresponding to
the stretch of residues at positions 55 to 67 seems to be a common
feature of most of the anticoagulant PLA2 enzymes.
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Figure 1 Structure–function relationships of anticoagulant proteins

(A) The predicted anticoagulant region of anticoagulant PLA2 enzymes [26]. The ribbon model of N. naja PLA2 was generated from the PDB file (#1POA) [171]. The predicted anticoagulant region
(highlighted in red) is fully exposed on the surface and easily accessible for interaction. Tryptophan residues are shown in yellow. (B) The binding site of FIX/FX-binding protein. The ribbon model
was generated from the PDB file (#1IXX) [99]. The concave central region formed through domain swapping between the two subunits is the binding site for the Gla domain [108,109], and is indicated
by the white broken line).

As mentioned above, the strongly anticoagulant PLA2 enzyme
interferes with the activities of prothrombinase and extrinsic
tenase complexes [33,35]. Therefore the predicted anticoagulant
region of CM-IV was compared with the amino acid sequences of
bovine FX, FV, prothrombin and TF. No homology was detected
between the anticoagulant region of CM-IV and that of either
prothrombin or FX. However, the anticoagulant region showed
partial homology with a region of the light chain of FVa and
with a section of TF [28,32]. This site in the light chain of FVa
is closer to the site that binds to activated protein C [42]. The
fact that binding of FXa to the light chain of FVa protects FVa
from subsequent cleavage of the heavy chain by activated protein
C [43] could be explained by the potential steric hindrance that
arises when they compete for binding to two separate sites that are
close to each other. The second half of the predicted anticoagulant
region shares similarity with TF [28,32,44]. Thus it appears that
there are two separate sites in the predicted anticoagulant region,
each of the sites sharing similarity with FVa and TF respectively.
We hypothesized that these sites are responsible for targeting to
the prothrombinase and extrinsic tenase complexes respectively
[44].

The predicted anticoagulant region is strongly supported by
site-directed mutagenesis studies [45] as well as using synthetic
peptides [46]. Insertion of a positive charge into porcine PLA2

(a D59R/S60G mutant) increased its ability to inhibit the
prothrombinase complex, whereas a K56Q mutant of HsPLA2

(human secretory PLA2) lost 3-fold activity [45]. However, the
affinity of HsPLA2 for FXa upon mutation of the residues Lys53,
Arg54, Lys57 and Arg58 to negatively charged residues did not
change significantly [47]. In contrast, mutations in the clusters
of basic residues located on the interface binding site led to
the loss of anti-prothrombinase activity of HsPLA2. Thus the
authors proposed that several clusters of basic residues probably
play an important role in the electrostatic interaction of HsPLA2

with FXa [47]. Recent studies using site-directed mutagenesis
have also shown that the basic residues in the C-terminal tail

and the β-wing of ammodytoxin A are responsible for its
binding to FXa and the inhibition of the prothrombinase com-
plex [48].

Metalloproteinases

Snake venom metalloproteinases are endoproteolytic enzymes.
Their catalytic activity is dependent on Zn2+ ions. On the basis
of size and domain structure characteristics, they are classified
into P-I, P-II, P-III and P-IV classes [49,50]. P-I proteinases con-
tain only a metalloproteinase domain, P-II proteinases contain
metalloproteinase and disintegrin domains, P-III proteinases con-
tain metalloproteinase, disintegrin-like and cysteine-rich domains,
and P-IV proteinases contain the P-III domain structure plus
lectin-like domains connected by disulphide bonds. To date, the
sequences of over 40 metalloproteinases from snake venoms have
been determined [50]. Six crystal structures of snake venom
metalloproteinases are available, but all of them are from the
P-I class. They are structurally similar to elastases and matrix
metalloproteinases. They have a central core of a five-stranded β-
sheet mixed with α-helices. There is a characteristic methionine-
turn structure between the αD and αE helices. The structure
is organized as an upper and lower domain with the substrate-
binding cleft running between them. In addition to their role in the
digestion of prey, they exhibit several biological effects, includ-
ing haemorrhagic, pro-coagulant, anticoagulant and antiplatelet
effects [50].

Some of the snake venom metalloproteinases inhibit blood
coagulation. Most metalloproteinases are fibrinogenases and they
release peptides from the C-terminal of fibrinogen. They are
classified into α- and β-fibrinogenases on the basis of their
specificity for the Aα or Bβ chain of fibrinogen [51]. α-Fibrino-
genases inhibit blood coagulation, because truncated fibrinogen
does not form as strong a fibrin clot as the native fibrinogen.
Thus the subtle physical destruction leads to the anticoagulant ac-
tion of metalloproteinases. The structure–function relationships of
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these metalloproteinases with respect to their anticoagulant effects
have not been studied yet.

Serine proteinases

Snake venom serine proteinases, in addition to their contribution
to the digestion of prey, affect various physiological functions.
They affect platelet aggregation, blood coagulation, fibrinolysis,
the complement system, blood pressure and the nervous system
[6–9,12–15,52]. Among the serine proteinases, only protein C
activators exhibit direct anticoagulant effects. Physiologically, the
zymogen of protein C circulating in the blood is activated by
thrombin. This activated protein C degrades FV/FVa and FVIII/
FVIIIa, and releases a tissue-type plasminogen activator. It also
stimulates fibrinolysis through its interaction with plasminogen
activator inhibitor [53–55]. Venoms from snake species belong-
ing to the genus Agkistrodon [copperhead snakes: A. contortrix
contortrix (southern copperhead), A. contortrix mokasen (northern
copperhead), A. contortrix pictigaster (Trans-Pecos copperhead),
A. piscivorus (cottonmouth), A. piscivorus leucostoma (western
cottonmouth), A. halys halys (Siberian moccasin), A. blomhoffi
ussuriensis (Ussurian mamushi) and A. bilineatus (cantil)] contain
protein C activators. These are glycoproteins with a molecular
mass of approx. 36–40 kDa. They activate protein C at low salt
concentrations in the absence of Ca2+ ions. High salt concen-
trations and the presence of Ca2+ ions inhibit their ability to activ-
ate protein C [56–58]. So far, the amino acid sequence of only the
protein C activator from A.c. contortrix venom has been deter-
mined [59]. They prolong clotting times [60,61] and thrombus
formation in the arteriovenous shunt [62] in vivo. So far, no
significant data are available on the structure–function relation-
ships of this class of proteinases.

Another group of serine proteinases, namely TLEs (thrombin-
like enzymes), deplete the fibrinogen and makes the plasma
unclottable. They are widely distributed within several pit viper
genera (Agkistrodon, Bothrops, Crotalus, Lachesis and Trimer-
esurus), as well as some true vipers (Bitis and Cerastes) and the
colubrid, Dispholidus typus (for an inventory and reviews, see
[63–65]). They are single-chain proteins or glycoproteins (for
example, see [66]) with a molecular mass of 26–33 kDa. They
share a high degree of sequence similarity among themselves
(≈67%). However, they show less than 40 % similarity to hu-
man thrombin. They preferentially release either fibrinopeptide
A or B, although rarely both with equal efficiency, unlike
thrombin [64,67]. Classical low-molecular-mass serine proteinase
inhibitors inhibit them, but most are not inhibited by thrombin in-
hibitors like antithrombin III and hirudin [4,64,67]. They act
on blood plasma and induce friable and translucent clots,
presumably due to lack of cross-linking of fibrin by FXIIIa.
They often also act on the coagulation factor FXIII, but appear
to degrade rather than activate it [4]. Unlike thrombin, they
do not activate other coagulation factors [67]. Thus, although
TLEs ‘resemble’ thrombin to an extent, they are structurally
and functionally dissimilar to the coagulation factor [4,14,15,64].
Furthermore, flavoxobin, a TLE from Trimeresurus flavoviridis
(Habu snake) venom, activates complement C3 protein and acts
as a heterologous C3 convertase [68]. These unique properties
enable their clinical use as defibrinogenating agents; for example,
ancrod [Arvin®; from Calloselasma rhodostoma (the Malayan
pit viper)] and batroxobin [Defibrase®; from Bothrops moojeni
(the Brazilian lancehead snake)] (reviewed in [69,70]). Since the
fibrin formed is not cross-linked, it is readily degraded by
the fibrinolytic system.

Two anticoagulant serine fibrinogenases from Vipera lebetina
(blunt-nosed viper) venom have been characterized [71]. One is

a basic (pI > 10) α-fibrinogenase, whereas the other is an acidic
(pI < 3) β-fibrinogenase [72–74]. Both enzymes are structurally
similar to other snake venom serine proteinases [71]. They have
the catalytic triad, and, in both enzymes, Asp189, which is located
in the bottom of the primary specificity pocket, is replaced by
Gly189. (For more details on proteinases affecting thrombosis and
haemostasis, their structure and properties, see [52,74–76].)

L-Amino acid oxidases

L-Amino acid oxidases catalyse the oxidative deamination of a
number of L-amino acids and generate hydrogen peroxide (H2O2).
It is widely known that these enzymes affect haemostasis by
modulating platelet function [77–80]. Recently, Sakurai et al. [81]
showed that L-amino acid oxidase purified from Agkistrodon halys
blomhoffii exhibits anticoagulant activity. This enzyme affects
only the intrinsic pathway, having little effect on the extrinsic
pathway. Furthermore, they showed that it selectively inhibits FIX
activity. H2O2 production does not appear to be involved in the
inactivation. Interestingly, L-amino acid oxidase does not bind or
interact directly with FIX, as shown by surface plasmon resonance
[81]. Further studies are needed to clarify the mechanism of
inactivation.

NON-ENZYMATIC ANTICOAGULANT PROTEINS

Several snake venom proteins with no ‘detectable’ (known or
tested) enzymatic activity inhibit blood coagulation. A number
of non-enzymatic anticoagulant proteins have been purified and
characterized. These proteins inhibit the coagulation process
through their direct interaction with a specific coagulation factor.
The mechanisms appear to be simple, and these proteins interfere
in either complex formation or inhibit the activity of one of
the proteinases. The study of such factors significantly contri-
butes to our understanding of blood coagulation. Furthermore,
the structure–function relationships of these proteins and identi-
fication of the functional sites may be useful in the development
of new anticoagulant agents.

C-type lectin-related proteins

C-type lectins are homodimers and possess the ability to agglu-
tinate red blood cells through their interaction with carbohydrate
moieties. C-type lectin-related proteins, on the other hand, are
heterodimers or oligomeric complexes of heterodimers and do not
possess lectin-like activity [82–84]. At times, they are also found
in the snake venom as a complex with metalloproteinases. C-type
lectin-related proteins form the integral part of pro-coagulant pro-
teins, such as FX activator from Daboia russelli (Russell’s viper;
formerly Vipera russelli) venom and prothrombin activators from
Echis carinatus (saw-scaled viper) and Echis multisquamatus
(Central Asian sand viper) venoms [85–88]. In all these cases,
C-type lectin-related subunits act as regulatory subunits and are
involved in determining the substrate specificity in the presence
of Ca2+ ions (for details, see [89]).

FX and FIX-binding proteins

Anticoagulant C-type lectin-related proteins were among the
first non-enzymatic proteins to be isolated and characterized
from snake venoms. They were first isolated and purified from
Deinagkistrodon acutus (hundred-pace pit viper; formerly
Agkistrodon acutus) and Trimeresurus stejneri (Stejneger’s bam-
boo viper; formerly, Trimeresurus gramineus) venoms [90,91].
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They showed that these anticoagulant proteins inhibit prothrom-
bin activation by non-enzymatic mechanisms [92,93]. However,
these studies were not followed by detailed studies on their
structure and mechanism of action. Atoda and Morita [94] purified
an anticoagulant protein from T. flavoviridis venom using a FX-
affinity column. This protein binds to FX/FXa as well as to FIX/
FIXa. This anticoagulant was shown to be the first C-type lectin-
related protein on the basis of its amino acid sequence and di-
sulphide linkages [95,96]. Subsequently, they also purified and
characterized a specific FIX-binding protein and FX-binding
protein from T. flavoviridis and D. acutus venoms respectively
[97,98]. These are heterodimeric proteins with α- and β-chains.
Both chains share the common structural scaffold of C-type
lectin [99,100]. The core structure is similar to the carbohydrate-
recognition domain of mannose-binding protein, a C-type lectin
[101,102]. A distinctive structural feature among C-type lectin-
related proteins [99,100,103–106] is that the central loop of the
individual subunit extends away from the core structure and forms
a large open loop. This central loop forms the dimeric interface
through domain swapping; a domain from the α subunit replaces
essentially an identical domain in the β subunit. At the same time,
this domain from the β subunit is swapped for the same domain
in the α subunit. This is the first demonstrated example of
three-dimensional swapping in the central region, whereas all
other domain swapping occurs at the N- or C-terminus [107].
Furthermore, domain swapping is found mostly in the formation
of homodimers or homo-oligomers, but not in the formation of
heterodimers, as in the case of C-type lectin-related proteins
[99,100,103–106]. This swapped dimeric interface, along with
core structures of the α and β subunits, forms the concave ligand-
binding site (see below).

The snake venom anticoagulant C-type lectin-related proteins
inhibit the activity of the coagulation factors FIX and FX [96–
98]. They bind to these coagulation factors with nanomolar
and subnanomolar affinities. The Gla (γ -carboxyglutamic acid)
domain peptides of FX (comprising residues 1–44 and 1–41)
bind to FX-binding protein in the presence of Ca2+ with apparent
dissociation constants of 1.0 and 100 nM respectively [108].
Thus most of the interaction occurs through the Gla domain.
Interestingly, although FIX/FX-binding protein interacts with
both FIX and FX, it has a low affinity for FX Gla domain peptides
but binds to the Gla peptide of FIX-(1–46) [109]. The three-
dimensional structures of the complexes [108,109] show that the
Gla domains bind to the concave ligand-binding site between
the two subunits (Figure 1B). The FX Gla domain has eight bound
Ca2+ ions [108]. One of the Ca2+ ions participates in the binding
interface between the Gla domain and the FX-binding protein.
There are nine salt-bridges between the negatively charged Gla
domain and the positively charged FX-binding protein, and 21
water molecules form an extensive network of hydrogen-bonds
between the α-chain and the Gla domain [108]. Phe4, Leu5 and
Val8 in the N-terminal loop of the Gla domain interact with
Arg112, Met113 and Ile114 of the β-chain. Thus salt-bridges along
with hydrophobic interactions and hydrogen bonds stabilize the
complex between the Gla domain and the FX-binding protein (for
details, see [108]). This binding interferes in the Ca2+-dependent
binding of FIX and FX to phospholipid membranes, and hence
exhibits potent anticoagulant effects.

Bothrojaracin

A second group of snake venom anticoagulants belonging to
C-type lectin-related proteins interact specifically with thrombin/
prothrombin. They include bothrojaracin [110,111] and bothro-
alternin [112]. Bothrojaracin was purified from Bothrops jararaca

venom as a component that inhibited thrombin-induced platelet
aggregation [110], with IC50 values of 1–20 nM; it also inhibited
binding of α-thrombin to fibrinogen with a K i of 15 nM [110]. It,
however, did not inhibit platelet aggregation induced by other
agonists, such as collagen, platelet activation factor, arachidonic
acid, ADP and cerestocytin, a TLE from Cerastes vipera (Sahara
sand viper) venom. Bothrojaracin inhibited the binding of 125I-
labelled α-thrombin to platelets [110]. To test whether this inhi-
bition is due to either the direct interaction with thrombin
receptor(s) on the platelets or thrombin itself, Zingali et al. [110]
performed an elegant experiment. They incubated 10 nM bothroj-
aracin (sufficient to completely inhibit thrombin-induced aggrega-
tion) with platelets and removed the supernatant. The platelets that
were resuspended in a bothrojaracin-free medium aggregate when
stimulated by thrombin. These results indicated that bothrojaracin
interacted with thrombin, and not thrombin receptor(s) on plate-
lets. Furthermore, they showed that 125I-labelled bothrojaracin
did not bind to platelets [110]. Bothrojaracin–thrombin com-
plexes were identified on non-denaturing gel electrophoresis.
Bothrojaracin inhibited thrombin effects on macromolecular
substrates, but not on the small chromogenic substrate S-2238
[110]. It also neutralized the inhibition of amidolytic activity
of thrombin by hirudin. From these results, Zingali et al. [110]
concluded that it is an exosite inhibitor. The high-affinity binding
of α-thrombin to immobilized bothrojaracin (Kd 0.6 nM) is
inhibited by a C-terminal peptide (comprising residues 54–65)
of hirudin, indicating that bothrojaracin binds to the exosite 1.
On the other hand, γ -thrombin, in which exosite 1 is disrupted,
binds only with a Kd of 0.3 µM [111]. As γ -thrombin still binds
to bothrojaracin, Arocas et al. [111] examined its interaction
at exosite 2 (the heparin-binding site). Bothrojaracin does not
modify the rate of inhibition of α-thrombin by antithrombin in
the absence of heparin. In contrast, it significantly lowers the rate
of inhibition by antithrombin in the presence of heparin. Further,
bothrojaracin does not bind to a heparin column, indicating that
it interacts with thrombin at exosite 2 [111]. Data from solid-
phase binding studies showed that γ -thrombin clearly supported
the binding of bothrojaracin to exosite 2. Thus the high affinity
of interaction is due to its ability to bind to both exosites 1
and 2 [111]. Structurally, it is a heterodimeric protein held
together by an interchain disulphide bond. The A and B chains
are similar to C-type lectin-related proteins [113]. More than
one isoform of bothrojaracin has been identified in individual
Bothrops jararaca venom [114–116]. It has been found in
six Bothrops species [B. atrox (Barba Amarilla snake), B. cotiara
(cotiara), B. jararacussu (jararacussu), B. moojeni and B. neuwiedi
(jararaca pintada)] and in small amounts in Lachesis muta
(bushmaster snake) venom, but not in Crotalus durissus terrificus
(South American rattlesnake) venom [117]. In addition to its
ability to inhibit thrombin directly, bothrojaracin exhibits its anti-
coagulant effects by inhibiting the feedback activation of coagul-
ation factor FV [118] and activation of prothrombin to thrombin
[119,120]. The inhibition of FV activation by thrombin is due to
its ability to bind to exosite 1, as exosite 2 does not appear to play
a direct role in FV recognition by thrombin [118]. In pro-
thrombin, bothrojaracin binds to partially exposed anion-binding
exosite (pro-exosite 1) [121]. By studying the effects of dithio-
threitol and urea on subunit dissociation, unfolding and in-
activation of bothrojaracin, Monteiro et al. [122] proposed a
denaturation model for C-type lectin-related proteins. Overall,
bothrojaracin is an excellent inhibitor of thrombin through its
interaction with both the exosites, but not with the active site.
Furthermore, it exhibits allosteric effects on the thrombin active
site and provides a tool to study allosteric changes in thrombin
[123].

c© 2006 Biochemical Society



Structure, function and mechanism of anticoagulant proteins 383

Three-finger toxins

This is a family of non-enzymatic polypeptides containing 60–
74 amino acid residues [124,125]. This family of proteins is
found commonly in the venoms of elapids (cobras, kraits and
mambas) and hydrophids (sea snakes). Recently, they have been
found in colubrid venoms [126–130], but not those of vipers and
crotalids (rattlesnakes) [131]. They contain four or five disulphide
bridges, of which four are conserved in all the members [125].
Consequently, all proteins of this family show a similar pattern of
protein folding: three β-stranded loops extending from a central
core containing the four conserved disulphide bridges [132,133].
Because of this appearance, this family of proteins is called the
three-finger toxin family. Despite the overall similarity in struc-
ture, at times they differ from each other in their biological activ-
ities. Members of this family include α-neurotoxins [133–135],
κ-bungarotoxins [136], muscarinic toxins [137], fasciculins [138],
calciseptine [139,140], cardiotoxins (cytotoxins) [124,141], den-
droaspins [142] and anticoagulant proteins [143–145]. They
exhibit such varied activities through interaction with different
target protein receptors/acceptors, ion channels or phospholipids
(for details, see [146]). Interestingly, several other non-venom
proteins and polypeptides also belong to this superfamily of pro-
teins [147–151]. Structure–function relationships of a number of
these polypeptides have been well elucidated, and their functional
sites are located on distinct surfaces (for details, see [146]).

Anticoagulant three-finger toxins

The anticoagulant and antiplatelet effects of three-finger toxins
were first identified in cardiotoxins isolated from Naja nigricollis
crawshawii (spitting cobra) venom [143,144]. The mechanism of
antiplatelet action [152] and structure–function relationships
of these cardiotoxins [153,154] have been well elucidated. We
have recently initiated studies to characterize a number of three-
finger toxins with anticoagulant effects (see below).

Hemextin AB complex

Recently, a novel anticoagulant complex was characterized from
Hemachatus haemachatus venom [145]. It has two three-finger
toxins, hemextin A and hemextin B, as subunits. Individually,
hemextin A prolongs blood coagulation, but hemextin B does not
show any effect on blood clotting. However, hemextin B forms
a 1:1 complex and synergistically enhances the anticoagulant
effects of hemextin A. The dissection approach [30,31] was used
to identify the coagulation step that is (are) inhibited by hemextin
AB complex. Hemextin A and hemextin AB complex prolong the
prothrombin time, but not the Stypven or the thrombin time, and
hence we proposed that they inhibit the extrinsic tenase complex
[145]. Hemextin A inhibits the reconstituted extrinsic tenase (TF–
FVIIa) complex. As expected, hemextin B by itself does not
inhibit the complex, but through complex formation enhances
the inhibitory effects of hemextin A. Hemextin AB complex non-
competitively inhibits the TF–FVIIa complex with a K i value
of 50 nM [145]. Of the 12 serine proteinases tested, hemextin
A and hemextin AB complex specifically inhibit FVIIa and its
complexes. In addition, they mildly inhibit plasma kallikrein
activity. Thus hemextin AB complex is a highly specific natural
inhibitor of the initiation of blood coagulation. It is also the first
anticoagulant complex isolated from snake venom [145].

Proteinase inhibitors

Several snake venoms contain a number of isoforms of serine
proteinase inhibitors [155–158]. They contain 57–60 amino

acid residues and three disulphide bridges, and belong to the
Kunitz pancreatic trypsin-inhibitor family [156,157]. Some of
the closely related polypeptides from snake venoms block potas-
sium and calcium channels [159–162]. Overall three-dimensional
structures of proteinase inhibitors and their isoforms are similar
[163–166]. As all the proteinases in blood coagulation and fibrino-
lysis are serine proteinases, these group polypeptides were thought
to be potential anticoagulants [155]. Textilinins from Pseudonaja
textilis textilis (Australian common brown snake) venom are
being investigated for their plasmin inhibitive and antifibrinolytic
activities [167,168]. However, no specific inhibitors of proteinases
in blood coagulation and fibrinolysis have been identified yet.

Recently, a new family of snake venom proteins, waprins, was
isolated [169]. Members of this family contain 50–52 amino
acid residues with four disulphide bridges. They show significant
similarity to elafin (elastase inhibitor), and other whey acidic
proteins. Nawaprin, the first member of this family, shows a
structural fold similar to that of elafin [169]. Although cysteine
residues are conserved, waprins differ from each other in their
intercysteine segments. It would be interesting to study their abi-
lity to inhibit various proteinases in blood coagulation.

FUTURE PROSPECTS

Aberrations in normal blood coagulation functions can result
in thrombotic disorders or haemorrhage. In thrombosis, largely
unknown conditions promote the apparently spontaneous for-
mation of clots large enough to block circulation. Formation of
such blocks in the arteries supplying vital organs, such as the heart
or brain, can cause myocardial infarction or stroke respectively.
Thus a life-saving mechanism of blood coagulation becomes a po-
tentially life-threatening disease mechanism. Several conditions,
such as atherosclerosis, contribute significantly to promote the
spontaneous initiation of clotting. Anticoagulants are pivotal
for the prevention and treatment of thromboembolic disorders,
and approx. 0.7 % of the Western population receives oral anti-
coagulant treatment [170]. With the increasingly aging population
throughout the world, more people will require antithrombotic
therapies in the future. Thus various new anticoagulant and
antiplatelet agents are being sought after. Proteins from snake
venom affecting blood coagulation and platelet aggregation can
provide us with new lead compounds to design novel thera-
peutic agents, providing new paradigms in the treatment of
thromboembolic disorders. So far, tremendous progress has been
made in understanding the structure–function relationships and
mechanisms of a number of anticoagulant proteins from snake
venoms. In recent years, several new anticoagulant proteins have
been isolated from snake venoms. Further studies are needed to
decipher the structure–function relationships and mechanisms of
newly isolated anticoagulant proteins. Studies on these antico-
agulant proteins have potential in identifying new drug leads.
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